Среднее давление цикла

No Comments

В двигателях внутреннего сгорания могут быть использованы следующие циклы:

· со смешанным подводом теплоты как при постоянном объеме, так и при постоянном давлении;

· с подводом теплоты при постоянном объеме (v = const);

· с подводом теплоты при постоянном давлении (р = const).

Во всех перечисленных циклах отвод теплоты в цикле производится при постоянном объеме в силу того, что расширение газа происходит не полностью, и степень возможного расширения в двигателе определяется положением поршня в нижней мертвой точке.

Цикл со смешанным подводом теплоты (цикл Тринклера)

Цикл со смешанным подводом теплоты (цикл Тринклера) осуществляется в бескомпрессорных дизелях. В цилиндрах дизеля сжимается чистый воздух, и происходит самовоспламенение топлива, распыление которого осуществляется механическим путем с помощью насоса или насос-форсунки под давлением 100…150 МПа.

Топливо впрыскивается в камеру сгорания или специальные предкамеры. Процесс сгорания идет вначале с повышением давления, а затем при постоянном давлении. Осуществление такого подвода теплоты характерно для двигателей, работающих по смешанному циклу. При термодинамическом исследовании рассматривают цикл, состоящий из следующих процессов (рис. 9.14): aс – адиабатное сжатие; cz’ – изохорный подвод теплоты; z’z – изобарный подвод теплоты; ze – адиабатное расширение; еа – изохорный отвод теплоты.

Рис. 9.14. Диаграммы работы цикла со смешанным подводом теплоты

Цикл является как бы обобщающим для всех циклов поршневых ДВС. Цикл со смешанным подводом зависит от заданного начального состояния в точке с и от параметров цикла:

· степени сжатия (степень сжатия представляет собой отношение полного объема цилиндра Va к объему камеры сгорания Vc; разность между полным объемом и объемом камеры сгорания дает так называемый рабочий объем цилиндра Vh);

· степени изохорного повышения давления ;

· степени предварительного (изобарного) расширения .

Параметры рабочего тела в узловых точках цикла при рассмотрении отдельных процессов, находят по формулам:

Термический КПД смешанного цикла равен:

Подставляя выражения для соответствующих температур и полагая, что теплоемкости идеального газа величины постоянные, получим:

Как видно из формулы (9.9), термический КПД цикла растет с увеличением и k и уменьшается с увеличением . Степень изохорного повышения давления связана с величиной . Чем больше , тем меньше (при тех же значениях и q2). Тогда с ростом термический КПД смешанного цикла увеличивается.

Работа теоретического цикла определяется по формуле:

Отношение работы цикла к рабочему объему vh характеризует среднее давление цикла:

Среднее давление смешанного цикла равно:

Наиболее эффективным способом увеличения среднего давления цикла является повышение начального давления – наддув двигателя.

Рассмотренный идеальный цикл лежит в основе работы всех современных дизелей.

Цикл с подводом теплоты при постоянном объеме (цикл Отто)

Цикл с подводом теплоты при постоянном объеме (цикл Отто) является частным случаем рассмотренного цикла со смешанным подводом теплоты, когда степень изобарного расширения = 1.

По этому циклу работают двигатели, в цилиндрах которых сжимается топливно-воздушная смесь до давления 1,0… 1,5 МПа и поджигается в конце сжатия от электрической искры. Идеальный цикл Отто (рис. 9.15) состоит из процессов адиабатного сжатия (ас), подвода к рабочему телу теплоты при v = const (cz), адиабатного расширения (ze) и отдачи рабочим телом теплоты при v =const (еа).

Параметры в узловых точках цикла определяются так же, как и для цикла со смешанным подводом теплоты.

Рис. 9.15. Диаграммы работы цикла с подводом теплоты при постоянном объеме

Из выражения (9.11) видно, что термический КПД цикла с подводом теплоты при v = const зависит от степени сжатия и показателя адиабаты k рабочего тела, совершающего цикл. Несмотря на то, что с увеличением степени сжатия растут термический КПД и полезная работа цикла, при больших степенях сжатия ( > 10) в результате значительного повышения температуры в конце процесса сжатия может наступить самовоспламенение смеси.

Еще более существенным является то обстоятельство, что с увеличением степени сжатия, а следовательно, и с увеличением температуры в конце сжатия появляется детонация свежей рабочей смеси, которая приводит к взрывному характеру сгорания. В результате детонации процесс сгорания нарушается, мощность двигателя падает, расход топлива растет. По этой причине двигатели, работающие по циклу v = const, имеют вполне определенные предельные значения степени сжатия ( = 5,5…9,0).

Явление детонации в значительной степени зависит от сорта применяемого топлива, от его антидетонационных качеств. Поэтому сорт применяемого топлива определяет выбор предельного значения степени сжатия для двигателей легкого топлива.

Цикл с подводом теплоты при постоянном давлении (цикл Дизеля)

Цикл с подводом теплоты при постоянном давлении (цикл Дизеля) является также частным случаем обобщающего цикла при = 1. В двигателях дизеля раздельно сжимается воздух до давления 4,0…5,0 МПа, и смесь топлива с воздухом, сжатым во вспомогательном компрессоре. Подача топлива осуществляется так, чтобы давление в процессе сгорания оставалось постоянным.

Идеальный цикл дизеля (рис. 9.16) состоит из двух адиабат сжатия и расширения, изобары подвода теплоты и изохоры отвода теплоты Термический КПД и среднее давление цикла из формул (9.9) и (9.10) при = 1 соответственно равны:

Влияние на такое же, как и в циклах Тринклера и Отто, т.е. с увеличением степени сжатия увеличивается и термический КПД цикла. При увеличении степени предварительного расширения ( ), как видно из формулы (9.12), термический КПД цикла должен падать.

Рис. 9.16. Диаграммы работы цикла с подводом теплоты при постоянном давлении

При постоянной степени сжатия увеличение вызовет увеличение объема vz , который зависит от подводимого количества теплоты q1. При увеличении q1 увеличивается объем vz, а вместе с ним увеличивается и работа цикла. Таким образом, возрастание приводит к увеличению работы и уменьшению термического КПД.

Сопоставляя значения термических КПД циклов с подводом теплоты при v = const и p = const, видим, что они различаются множителем:

Отсюда следует, что при одинаковых степенях сжатия > .

Термодинамическая эффективность каждого из рассмотренных циклов зависит от конкретных условий его осуществления. Целесообразнее сравнивать циклы при различных степенях сжатия , но при одинаковых максимальных давлениях и температурах и одинаковом отведенном количестве теплоты q2.

Из TS-диаграммы (рис. 9.17) следует, что наибольший термический КПД будет у цикла с подводом теплоты при р = const:

КПД смешанного цикла имеет промежуточное значение по сравнению с циклами с подводом теплоты при p = const и v = const.

Рис. 9.17. Сравнение циклов при различных степенях сжатия

При оптимальных степенях сжатия (для цикла Отто Срочно?
Закажи у профессионала, через форму заявки
8 (800) 100-77-13 с 7.00 до 22.00

Среднее индикаторное давление — это условное постоянное по величине избыточное давление, которое, действуя на поршень в течение одного хода, совершает работу, равную работе газов за весь цикл:

, (4.1)

где Li — работа газов за один цикл в одном цилиндре,

pi — среднее индикаторное давление,

F — площадь поршня,

Vh — рабочий объем цилиндра.

,(4.2)

т.е. среднее индикаторное давление численно равно работе газов за цикл, отнесенной к единице рабочего объема. Таким образом, этот показатель оценивает степень эффективности использования рабочего объема цилиндра.

Значения рi могут быть получены расчетным путем или по индикаторным диаграммам.

При расчете используют параметры характерных точек расчетных циклов. При этом работа расчетного цикла может быть выражена как разность работ расширения и сжатия:

,(4.3)

где L’yz + L’zb — индикаторная работа расширения расчетного цикла дизеля,

Работа процесса сгорания (кривая yz) при постоянном давлении рассчитывается по формуле

,(4.4)

и ,

.

Работа процесса расширения (кривая zb) рассчитывается по формуле

,(4.5)

После преобразования, учитывая, что

и

Работа сжатия (кривая ас) рассчитывается по формуле

=

(4.6)

Подставив полученные выражения для отдельных участков цикла из уравнений (4.4), (4.5) и (4.6) в уравнение (4.3) и вынеся за скобки произведение рсVс, получим выражение для общей работы расчетного цикла:

Подставив последнее выражение в уравнение (4.2), получим

где p’i — среднее индикаторное давление расчетного цикла.

Так как Vc/Vh = (1/ε – 1), то окончательно для дизеля

Для двигателей с принудительным воспламенением ρ=1, Vb/Vz = ε, поэтому уравнение примет вид

Так как работа (и среднее индикаторное давление) действительных циклов на самом деле меньше, чем расчетных циклов, то с учетом коэффициента скругления φi индикаторной диаграммы

С помощью индикаторной диаграммы можно найти среднее индикаторное давление, обозначив индикаторную работу через площадь Fi:

где mр — масштаб диаграммы по оси ординат;

l — длина диаграммы по оси абсцисс.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студентов недели бывают четные, нечетные и зачетные. 9140 – | 7319 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Изменение давления в течение всего рабочего цикла двигателя с искровым зажиганием и дизеля показано на расчетных индикаторных диаграммах (рис. 20). Площадь нескругленных диаграмм (aczba) в определенном масштабе выражает теоретическую расчетную работу газов за один цикл двигателя. Эта работа, отнесенная к ходу поршня, является теоретическим средним индикаторным давлением рi ’ .

Для бензинового двигателя (рис.20), работающего по циклу с подводом теплоты при V=const, теоретическое среднее индикаторное давление

Рис.20. Индикаторная диаграмма бензинового двигателя

Для дизеля, работающего по циклу со смешанным подводом теплоты:

Среднее индикаторное давление pi действительного цикла отличается от значения рi на величину, пропорциональную Уменьшению расчетной диаграммы за счет скрутления в точках с, z, b.

Уменьшение теоретического среднего индикаторного давления вследствие отклонения действительного процесса от расчетного цикла оценивается коэффициентом полноты диаграммы φи и величиной среднего давления насосных потерь ∆рi.

Коэффициент полноты диаграммы φи принимается равным:

Для двигателей с электронным впрыском топлива …… 0,95 — 0,98

Для карбюраторных двигателей . 0,94 — 0,97

Для дизелей . 0,92 — 0,95

Среднее давление насосных потерь (МПа) при процессах впуска и выпуска

При проведении расчетов потери на газообмен учитываются в работе, затрачиваемой на механические потери, так как при экспериментальном определении работы трения обычно пользуются методом прокрутки двигателя, и, естественно, в определяемых таким методом механических затратах на прокрутку двигателя учитываются и затраты на насосные ходы. В связи с этим принимают, что среднее индикаторное давление рi, отличается от рi только на коэффициент полноты диаграммы

Дата добавления: 2016-07-09 ; просмотров: 463 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Categories: Давление

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock detector